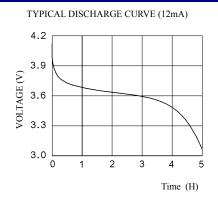
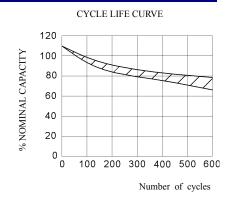
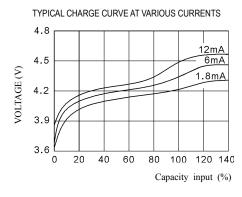
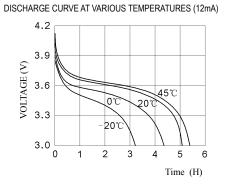
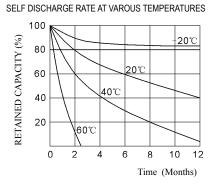

HUALI BATTERY CO.LTD 60K3A3H Ni-Cd BUTTON CELL


TECHNICAL DATA




Model	Voltage	Capacity	Recommended Trickle Charge Current	Nominal Charge Current	Normal Charging Time	Nominal Discharge Current	Weight
60K3A3H	3.6V	60mAh	1.8~3mA	6mA	14~16h	12mA	10.1g


TECHNICAL CHARACTERISTICS



TECHNICAL INFORMATION

1. APPLICATION

This specification applies to the Ni-Cd batteries

Model: 60K3A3H

- 2. CELL AND TYPE
- 2.1 Cell : Sealed Ni-Cd Button Cell
- 2.2 Type : Button type
- 2.3 Size type: 3.6V
- 3. RATINGS
- 3.1 Nominal voltage : 3.6V3.2 Nominal capacity : 60mAh
- 3.3 Typical weight : 10.1g
- 3.4 Standard charge : 6mA×14hours
 3.5 Rapid charge : 12mA×6hours
 Trickle current : 1.8mA
- 3.6 Discharge cut-off voltage: 3.0V
- 3.7 Temperature range for operation (Humidity: Max.85%)

Standard charge $0 \sim +45^{\circ}\text{C}$ Rapid charge $+10 \sim +45^{\circ}\text{C}$ Trickle charge $0 \sim +45^{\circ}\text{C}$

Discharge $-10 \sim +45$ °C Temperature range for storage (Humidity: Max.85%)

Within 2 years $-20 \sim +35^{\circ}\text{C}$ Within 6 months $-20 \sim +45^{\circ}\text{C}$ Within a month $-20 \sim +45^{\circ}\text{C}$ Within a week $-20 \sim +55^{\circ}\text{C}$

4. ASSEMBLY & DIMENSIONS

Per attached drawing

5. PERFORMANCE

5.1 TEST CONDITIONS

The test is carried out with new batteries (within a month after delivery) ambient conditions

Temperature: $+25 \pm 5^{\circ}$ C

Humidity: $60 \pm 20\%$ Note 1

Standard charge : 6mA×14hours Standard discharge : 12mA to 3.0V

5.2 TEST METHOD & PERFORMANCE

Test	Unit	Specification	Conditions	Remarks
Composite	mAh		Standard	Up to 3 cycles
Capacity		≥60	Charge/discharge	Are allowed
Open Circuit	Voltage		After 1 hour standard	
Voltage (OCV)	(V)	≥3.9	Charge	
Internal			Upon fully charge	
Impedance	$m\Omega/cell$	≤1000	(1KHz)	
High rate	Minute		Standard charge	
Discharge (30 mA)	Millute	≥60	Before discharge	
Discharge	mA	30	Maximum continuous	
Current	IIIA	30	Discharge current	
Orran ahanga		No leakage	1.8mA charge	
Over charge		Not explosion	one year	
Charge			Standard charge;	
Retention	mAh	48	Storage: 28 days;	
Retention			Standard discharge	
Cycle Life	Cycle	≥400	IEC509-1988 4.4	
Lookaga		No leakage nor	Fully charge at 6mA,	
Leakage		Deformation	Stand 14 days	

Note 2 IEC509-1988 4.4 cycle life

Cycle number	Charge	Stand in charged Condition	Discharge
1	6mA for 16h	5h	12mA for 3h
2-48	6mA for 8h	1h	12mA for 3h
49	6mA for 8h	1h	12mA to 1.0V/cell
50	6mA for 16h	1h	12mA to 1.0V/cell

^{1.}Befor the endurance in cycles test, the cell shall be discharged at 12mA to a final voltage of 1.0V/cell.

2. The following endurance test shall then be carried out, in an ambient temperature of 20°C±5°C. 5.3 Humidity

The battery shall not leak during the 14 days which it is submitted to the condition

- of a temperature of $33\pm3^{\circ}\text{C}$ and a relative humidity of $80\pm5\%$ OTHERS
- 6.1 We recommend you to set the cut-off voltage at 1.0V/cell
- 6.2 If the cut-off voltage is above 1.1V/cell, the battery may be underutilized resulting insufficient use of the available capacity
- 6.3 If it is below 1.0V/cell, the battery may have discharge or reverse charge to the cell
- **PRECAUTION**

The cells shall be delivered in charged condition. Before testing or using, the cell shall be

- discharged at $20\pm5^{\circ}$ C at a constant current of 12mA to a final voltage of 1.0V/cell. Avoid throwing cells into a fire or attempting to disassemble them.
- 7.2 Avoid short circuiting the cells.
- 7.3 Avoid direct solidarity to cells.
- 7.4 Observe correct polarity when connecting.
- 7.5 Do not charge with more than our specified current.
- Use cells only within the specified working temperature range.
- 7.7 Store cells in dry and cool place.