

LSI Computer Systems, Inc. 1235 Walt Whitman Road, Melville, NY 11747 (631) 271-0400 FAX (631) 271-0405

REVERSE PHASE (TRAILING-EDGE) HALOGEN LAMP DIMMER

FEATURES:

- Pushbutton or touch control of high-voltage lamps and <u>all</u> electronic transformer-coupled low-voltage halogen lamps.
- Controls Fluorescents and CFLs via dimming ballasts.
- Reverse-phase technology eliminates RFI generation.
- "FO" versions power up Full On after application of AC.
- Soft turn-on and soft turn-off
- · Three operating modes.
- Inputs for direct or remote activation.
- 50Hz/60Hz AC line frequency.
- +12V Power Supply (VDD VSS).
- LS7636, LS7637 (DIP); LS7636-S, LS7637-S (SOIC); LS7636FO, LS7637FO (DIP); LS7636FO-S, LS7637FO-S (SOIC) - See Figure 1 -

APPLICATIONS:

Electronic dimmers for wall-switch control of ceiling mounted lighting, foot-switch control of large floor lamps and handswitch control of table lamps.

BACKGROUND AND GENERAL DESCRIPTION:

Since the operating currents of some electronic transformers are below the holding current of most triacs, a typical triacbased (leading-edge) dimmer may not operate properly when driving an electronic transformer-coupled low-voltage halogen lamp. The filtering components in the electronic transformer which prevent its operating frequency from generating line interference inhibit triac triggering. can also The LS7636 LS7637 family of reverse-phase dimmer ICs drive FETs or IGBTs (see Figure 3 and Figure 4) and 'slowly' turns on current beginning at the AC input zero-crossing. This 'slow' current turn on is ideal for interfacing with the primary of **any** electronic transformer and also eliminates the RFI generation caused by the sudden turn on of current when using a triacbased dimmer.

INPUT/OUTPUT DESCRIPTION:

VDD (Pin 1) Supply voltage positive terminal.

Vss (Pin 7) Supply voltage negative terminal.

MODE (Pin 2) - See Table 1

All variations of LS7636 and LS7637 can operate in 3 different modes. The 3-state MODE input selects the operating modes: Vss = Mode 0; Float = Mode 1; VDD = Mode 2

SYNC (Pin 4) - See Figure 2 The AC line frequency is applied to this input. All internal timings are synchronized to the AC.

PIN ASSIGNMENT - TOP VIEW V DD (+V) 1 5 8 GATE MODE 2 7 Vss (-V) TEST 3 5 6 0VC

June 2009

SENS

5

SENS (Pin 5) - See Table 1

SYNC

4

A Logic 0 applied to this input alters the Gate Drive output either by turning it on, turning it off or by changing its conduction angle. Specifically which action takes place is dependent on the type of activation of the SENS input, namely SHORT or LONG duration and the prior state of the Gate Drive output.

FIGURE 1

OVC - Overcurrent Sense Input (Pin 6)

The voltage at this input is sampled every half-cycle in a four-cycle period. If the voltage reaches the OVC threshold four times, then the Gate Output is turned Off shutting down the current through the load. Six cycles after shutdown occurs, the output is turned On to the previous conduction angle, the OVC counter is reset and a new four-cycle period begins. The OVC voltage may be generated with a fractional-Ohm resistor as shown in Figure 4 and Figure 5. When OVC is not being used, Pin 6 must be tied to Pin 7.

Gate (Pin 8)

The Gate Drive output is a positive-going pulse that initiates at every zero-crossing of the AC input. The width of the Gate Drive signal determines the conduction angle as shown in Figure 2.

Test (Pin 3) For factory use only.

> The information included herein is believed to be accurate and reliable. However, LSI Computer Systems, Inc. assumes no responsibilities for inaccuracies, nor for any infringements of patent rights of others which may result from its use.

TIMING CHARACTERISTICS (See F Parameter	igures 2, 3 and SYMBOL	d 4): MIN	ТҮР	МАХ	UNIT	CONDITION
SYNC Frequency	fs	40	-	70	Hz	-
SHORT Activation	TS1	50	-	417	ms	60Hz
	TS1	60	-	500	ms	50Hz
LONG Activation	TS2	433	-	Infinite	ms	60Hz
	TS2	520	-	Infinite	ms	50Hz
GATE DRIVE pulse width	GDW	2.31	-	7.13	ms	60Hz
(see Note 5)	GDW	2.78	-	8.56	ms	50Hz
Conduction Angle	Ø	50	-	154	deg	-
Ø incremental steps (Note 1)	Ø	-	1.4	-	deg	-
Soft-on slew rate	Ss	-	1.4	-	deg / 33.3ms	60Hz
	Ss	-	1.4	-	deg / 40ms	50Hz
A0 to A1/A2 to A0 slew rate	SAA	-	1.4	-	deg / 33.3ms	60Hz
(Note 2)	SBA	-	1.4	-	deg / 40ms	50Hz
A1 to B1/B2 to A2 slew rate	SBA	-	1.4	-	deg / 66.7ms	60Hz
(Note 3)	SBA	-	1.4	-	deg / 80ms	50Hz
B1 to B2 delay	Tbd	-	500	-	ms	60Hz
(Note 4)	TBD	-	600	-	ms	50Hz

Note 1: Total number of steps = 77.

Note 2: Number of steps from A0 to A1, or A2 to A0 = 55.

Note 3: Number of steps from A1 to B1 or B2 to A2 = 21.

Note 4: ø is at minimum between B1 and B2. TBD is applicable for **LS7636** only.

Note 5: For LS7637 when minimum ø is reached, dimming direction reverses only

if the LONG Activation is terminated and reapplied.

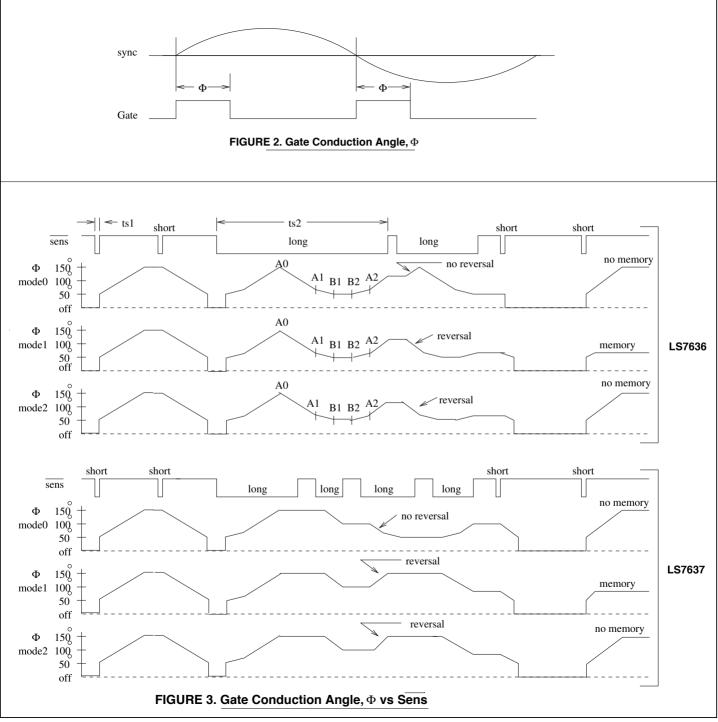
The difference among all versions of **LS7636** and **LS7637** are:

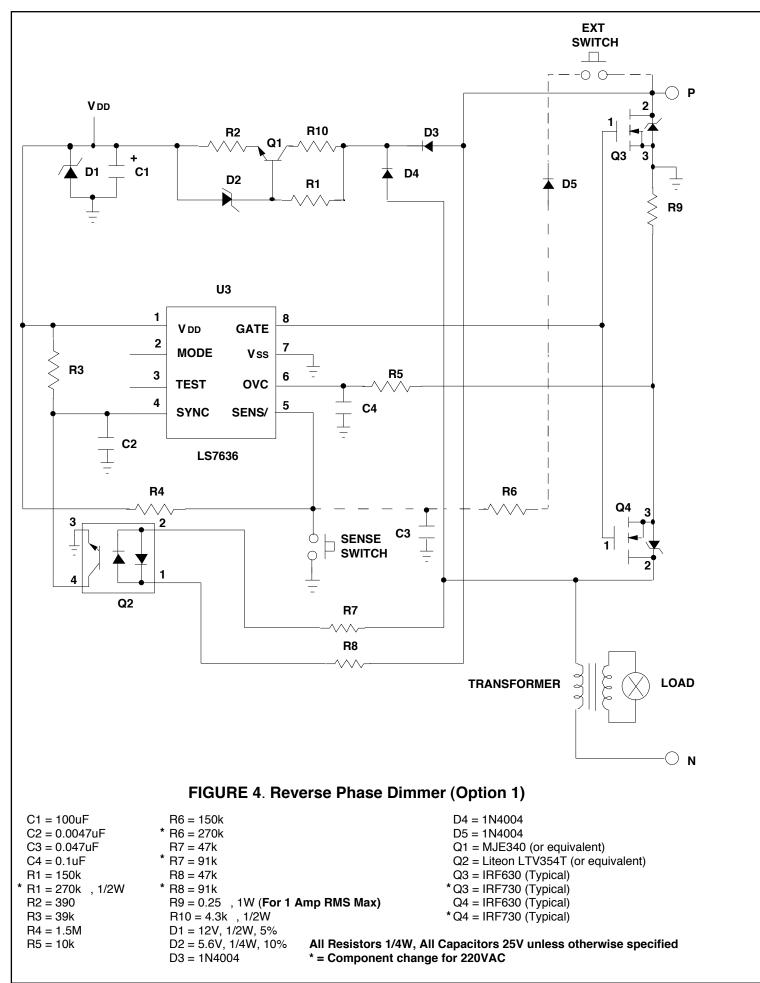
LS7636 (LS7636FO)

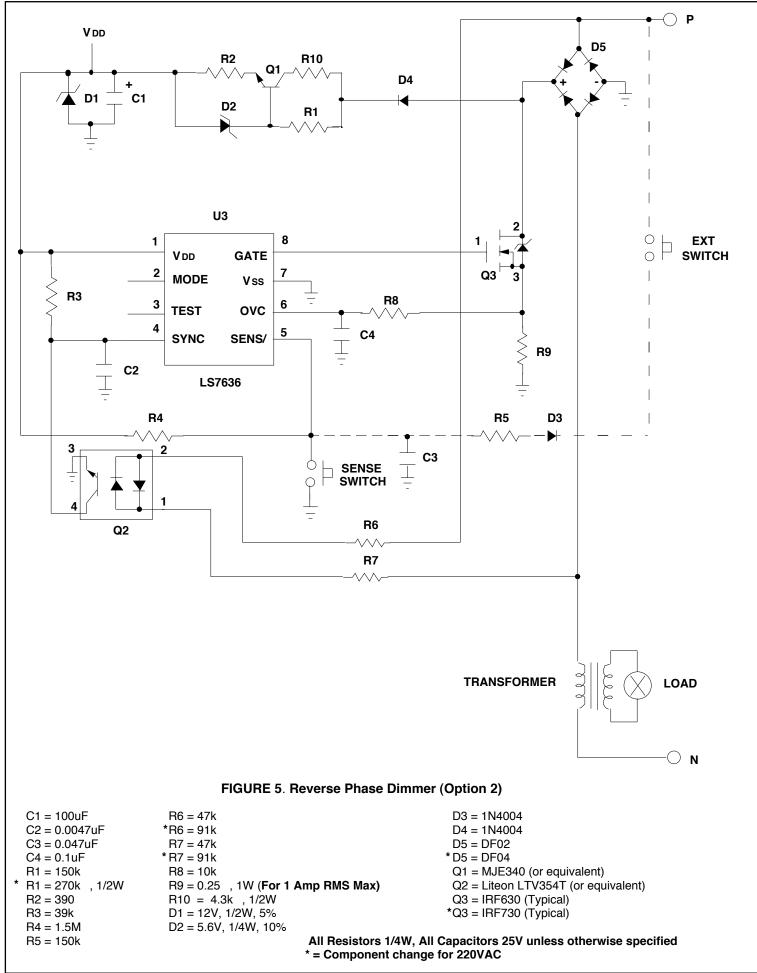
Upon power-up, the Gate Drive output is Off.

(Upon power-up, the Gate Drive output is On at maximum conduction angle.) When a LONG Activation is applied, the dimming direction automatically reverses whenever maximum or minimum conduction angles are reached.

LS7637 (LS7637FO)


Upon power-up, the Gate Drive is Off.


(Upon power-up, the Gate Drive is On at maximum conduction angle.) When a LONG Activation is applied, the dimming stops whenever maximum or minimum conduction angles are reached. In order to change dimming levels from maximum or minimum, LONG Activation must be removed and reapplied. The purpose of this feature is to allow the user to positively locate maximum and minimum conduction angles. If the User applies a LONG Activation when the Gate Drive Conduction Angle is within a "few" degrees of Maximum or Minimum, the Gate Drive Conduction Angle can move to Maximum or Minimum and stop without the User being able to observe a change in brightness. Therefore, the User should be instructed that if no change in brightness is observed in response to a LONG Activation, the LONG Activation should be removed and reapplied in order to produce a change in brightness.


LS7637 NOTE:

7636-121906-2

			1	TABLE 1				
MODE	SHORT	ACTIVATION		LONG-ACTIVATION				
	PRE-ACTIVATION Ø	POST-ACTIVATION Ø	PRE-A	CTIVATION Ø	P	OST-ACTIV Ø	ATION	REVERSAL (Note 5)
0	OFF ON	MAX (Note 1) OFF (Note 4)	MAX	OFF/MIN MAX INTERMEDIATE		up from MII down from from INTEF	MAX	N/A N/A NO
1	OFF ON	MEMORY (Notes 2, 3) OFF (Note 4)	MAX	OFF/MIN MAX INTERMEDIATE		Varies up from MIN Varies down from MAX Varies from INTERMEDI		N/A N/A YES
2	OFF ON	MAX (Note 1) OFF (Note 4)	MAX	OFF/MIN MAX INTERMEDIATE		up from MII down from from INTEF	MAX	N/A N/A YES
PARAN DC sup Any inp	YES = Dimming direction does reverse from ABSOLUTE MAXIMUM RATINGS: PARAMETER SYMBOL DC supply voltage VDD - VSS Any input voltage VIN Operating temperature TA			+ Vss - 0.3 t	LUE 16 o Vdd + 0. o +90	UNIT V V °C		
DC ELE	CTRICAL CHARACT				o +150		°C	
(TA = +25°C, all voltages reference) PARAMETER		renced to VSS. VDD = +1	2V unless	otherwise note	ed.) MAX	UNIT	CONDITION	
Supply Supply		Vdd Idd	10 -	12 0.8	15 1	V mA	- Output unloade	ed
	.0	VISL	-	-	5.7	V	VDD = +12V -	
SYNC H	łi	VISH	6.4	-	-	V	-	
	.0	VIEL	-		4.5	V	-	
SENS L				-				
SENS L SENS ⊦	łi	VIEH	7.7	-	-	V	-	
	DRIVE Current		7.7 4 4	-	- - -	V mA mA	- Voн = 11.5V Vol = 0.5V	

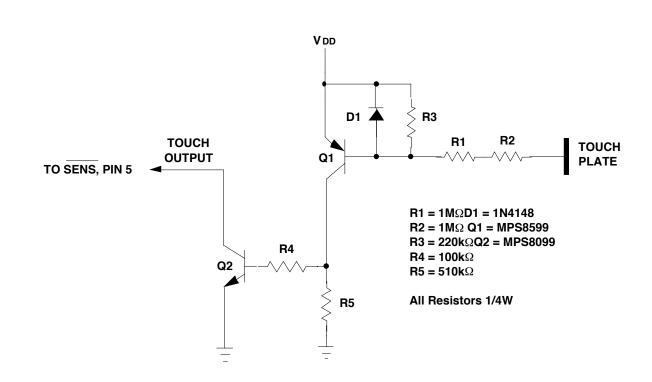


FIGURE 6. Application Circuit For Touch Control Operation

The Application Circuit shown in Figure 6 can be applied to the Reverse Dimmer circuits shown in <u>Figure 4</u> (Option 1) and Figure 5 (Option 2). The Touch Output is connected to the SENSE input (Pin 5) of LS7636. When using the circuit shown in Figure 6, the following components must be removed in Figure 4 and Figure 5:

Figure 4 - Remove R6, D5, EXT SWITCH and SENSE SWITCH. C3 remains.

Figure 5 - Remove R5, D3, EXT SWITCH and SENSE SWITCH. C3 remains.