TOSHIBA BIPOLAR LINEAR INTEGRATED CIRCUIT SILICON MONOLITHIC # TA7291P,TA7291S,TA7291F #### **BRIDGE DRIVER** The TA7291P / S / F are Bridge Driver with output voltage control. #### **FEATURES** - 4 modes available (CW / CCW / STOP / BRAKE) - Output current: P type 1.0 A (AVE.) 2.0 A (PEAK) S / F type 0.4 A (AVE.) 1.2 A (PEAK) - Wide range of operating voltage: VCC (opr.) = 4.5~20 V VS (opr.) = 0~20 V Vref (opr.) = 0~20 V - Build in thermal shutdown, over current protector and punch = through current restriction circuit. - Stand-by mode available (STOP MODE) - Hysteresis for all inputs. Weight HSIP10-P-2.54 : 2.47 g (Typ.) SIP9-P-2.54A : 0.92 g (Typ.) HSOP16-P-300-1.00 : 0.50 g (Typ.) # **BLOCK DIAGRAM** #### **PIN FUNCTION** | PIN No. | | | 0)/440.01 | ELIZATION DECORPTION | | | |---------|---|----|------------------|--|--|--| | Р | S | F | SYMBOL | FUNCTION DESCRIPTION | | | | 7 | 2 | 11 | V _{CC} | Supply voltage terminal for Logic | | | | 8 | 6 | 15 | Vs | Supply voltage terminal for Motor driver | | | | 4 | 8 | 5 | V _{ref} | Supply voltage terminal for control | | | | 1 | 5 | 1 | GND | GND terminal | | | | 5 | 9 | 7 | IN1 | Input terminal | | | | 6 | 1 | 9 | IN2 | Input terminal | | | | 2 | 7 | 4 | OUT1 | Output terminal | | | | 10 | 3 | 13 | OUT2 | Output terminal | | | 2 P Type: Pin (3), (9): NC S Type: PIN (4): NC F Type: PIN (2), (3), (6), (8), (10), (12), (14), and (16): NC For F Type, We recommend FIN to be connected to the GND. # **FUNCTION** | INF | PUT | OUT | MODE | | |-----|-----|------|------|----------| | IN1 | IN2 | OUT1 | OUT2 | MODE | | 0 | 0 | 8 | ∞ | STOP | | 1 | 0 | Н | L | CW / CCW | | 0 | 1 | L | Н | CCW / CW | | 1 | 1 | L | L | BRAKE | ∞: High impedance Note: Inputs are all high active type # **MAXIMUM RATINGS (Ta = 25°C)** | CHARACTERISTIC | | | SYMBOL | RATING | UNIT | | |-----------------------|--------|------------------|------------------|---------------|------|--| | Supply Voltage | | | V _{CC} | 25 | V | | | Motor Drive Voltage | | | VS | 25 | V | | | Reference Voltage | | | V _{ref} | 25 | V | | | Output
Current | PEAK | Р Туре | 1 | 2.0 | А | | | | | S / F Type | lo (PEAK) | 1.2 | | | | | AVE. | Р Туре | la | 1.0 | | | | | | S / F Type | IO (AVE.) | 0.4 | | | | | P Type | | | 12.5 (Note 1) | | | | Power Dissipation | | S Type | P_{D} | 0.95 (Note 2) | W | | | | | F Type | | 1.4 (Note 3) | | | | Operating Temperature | | | T _{opr} | -30~75 | °C | | | Storage Temperature | | T _{stg} | -55~150 | °C | | | Note 1: Tc = 25°C (TA7291P) Note 2: No heat sink Note 3: PCB ($60 \times 30 \times 1.6$ mm, occupied copper area in excess of 50%) Mounting Condition. 3 Wide range of operating voltage: $V_{CC (opr.)} = 4.5 \sim 20 \text{ V}$ V_{S (opr.)} = 0~20 V V_{ref (opr.)} = 0~20 V V_{ref} ≤ V_S # **ELECTRICAL CHARACTERISTICS** (Unless otherwise specified, Ta = 25°C, V_{CC} = 12 V, V_{S} = 18 V) | CHARACTERISTIC | | | SYMBOL | TEST
CIR-
CUIT | TEST CONDITION | MIN | TYP. | MAX | UNIT | | |--|-------------------------|------------------|------------------------|--------------------------------------|--|---------|------|------|------|--| | Supply Current | | | I _{CC1} | | Output OFF, CW / CCW mode | 1 | 8.0 | 13.0 | mA | | | | | | I _{CC2} | 1 | Output OFF, Stop mode | - | 0 | 50 | μΑ | | | | | I _{CC3} | | Output OFF, Brake mode | 1 | 6.5 | 10.0 | mA | | | | Input Operating Voltage 1 (High) 2 (Low) | | V _{IN1} | | T _i = 25°C | 3.5 | _ | 5.5 | ٧ | | | | | | V _{IN2} | 2 | 1]-25 0 | GND | _ | 0.8 | | | | | Input Current | | I _{IN} |] _ | V _{IN} = 3.5 V, Sink mode | _ | 3 | 10 | μΑ | | | | Input Hysteresis | nput Hysteresis Voltage | | ΔV_{T} | | _ | _ 0.7 _ | | V | | | | Saturation
Voltage | P/S/F | Upper
Side | V _{SAT U-1} | | V _{ref} = V _S , V _{OUT} - V _S measure
I _O = 0.2 A, CW / CCW mode | _ | 0.9 | 1.2 | V | | | | Type | Lower
Side | V _{SAT L-1} | 3 | V _{ref} = V _S , V _{OUT} - GND
measure
I _O = 0.2 A, CW / CCW mode | _ | 0.8 | 1.2 | | | | | S/E | Upper
Side | V _{SAT U-2} | | $V_{ref} = V_S$, $V_{OUT} - V_S$ measure $I_O = 0.4$ A, CW / CCW mode | _ | 1.0 | 1.35 | | | | | S / F
Type | Lower
Side | VSAT L-2 | | V _{ref} = V _S , V _{OUT} - GND
measure
I _O = 0.4 A, CW / CCW mode | _ | 0.9 | 1.35 | | | | | | Upper
Side | V _{SAT U-3} | | V _{ref} = V _S , V _{OUT} - V _S measure
I _O = 1.0 A, CW / CCW mode | _ | 1.3 | 1.8 | | | | | P Type | Lower
Side | VSAT L-3 | | V _{ref} = V _S , V _{OUT} - GND
measure
I _O = 1.0 A, CW / CCW mode | _ | 1.2 | 1.85 | | | | Output
Voltage
(Upper Side) | S / F Type | | V _{SAT U-1} | - 3 | V _{ref} = 10 V
V _{OUT} - GND measure,
I _O = 0.2 A, CW / CCW mode | _ | 11.2 | _ | V | | | | | | V _{SAT U-2} , | | V _{ref} = 10 V
V _{OUT} - GND measure,
I _O = 0.4 A, CW / CCW mode | 10.4 | 10.9 | 12.2 | | | | | Р Туре | | V _{SAT U-3} , | | V _{ref} = 10 V
V _{OUT} - GND measure,
I _O = 0.5 A, CW / CCW mode | ı | 11.0 | _ | | | | | | | V _{SAT U-4} , | | V _{ref} = 10 V
V _{OUT} - GND measure,
I _O = 1.0 A, CW / CCW mode | 10.2 | 10.7 | 12.0 | | | | Leakage Current Lower Side | | | I _{L U} | 4 | V _L = 25 V | _ | _ | 50 | | | | | | | ILL | - | V _L = 25 V | _ | _ | 50 | μΑ | | | Diode
Forward
Voltage | S / F
Type | Upper
Side | V _{F U−1} | | I _F = 0.4 A | _ | 1.5 | _ | | | | | Р Туре | Lower
Side | V _{F U-2} | _ | I _F = 1 A | _ | 2.5 | _ | | | | | S / F
Type | Upper
Side | V _{F L−1} | 5 | I _F = 0.4 A | _ | 0.9 | _ | V | | | | Р Туре | Lower
Side | V _{F L-2} | | I _F = 1 A | _ | 1.2 | _ | | | | Reference Current | | I _{ref} | 2 | V _{ref} = 10 V, Source mode | _ | 20 | 40 | μΑ | | | # **TEST CIRCUIT 1** Icc1, Icc2, Icc3 Note: HEAT FIN of TA7291F is connected to GND. #### **TEST CIRCUIT 2** $V_{IN~1}, V_{IN~2}, I_{IN~,} \Delta V_{T}, I_{ref}$ 5 Note: HEAT FIN of TA7291F is connected to GND. #### **TEST CIRCUIT 3** VSAT U-1, 2, 3 VSAT L-1, 2, 3 VSAT U-1', 2', 3', 4' Note: IOUT calibration is required to adjust specified values of test conditions by RL. $(I_{OUT} = 0.2 \text{ A} / 0.4 \text{ A} / 0.5 \text{ A} / 1.0 \text{ A})$ Note: HEAT FIN of TA7291F is connected to GND. #### **TEST CIRCUIT 4** IL U, L TA7291P / TA7291S / TA7291F Note: HEAT FIN of TA7291F is connected to GND. #### **TEST CIRCUIT 5** $V_{F U-1, 2} V_{F L-1, 2}$ 6 2001-08-27 3 Vout (H) 8 2001-08-27 #### **NOTES** #### Input circuit Input Terminals of pin (5) and (6) (TA7291P) are all high active type and have a hysteresis of 0.7 V (typ.), 3 μ A (typ.) of source mode input current is required. #### **Output circuit** Output voltage is controlled by $V_{\rm ref}$ voltage. Relationship between $V_{\rm OUT}$ and $V_{\rm ref}$ is $V_{OUT} = V_{BE} (\approx 0.7) + V_{ref}$ V_{ref} terminal required to connect to V_{S} terminal for stable operation in case of no requirement of V_{OUT} control. $V_{ref} \le V_{S}$ #### **APPLICATION CIRCUIT** Note 1: Experiment to find the optimum capacitor valve. Note 2: To protect against excess current, current limitation resistor R should be inserted where necessary. #### **NOTES** - Be careful when switching the input because rush current may occur. When switching, stop mode should be entered or current limitation resister R should be inserted. - The IC functions cannot be guaranteed when turning power on of off. Before using the IC for application, check that there are no problems. - Utmost care is necessary in the design of the output line, Vs, Vcc and GND line since IC may be destroyed due to short-circuit between outputs, air contamination fault, or fault by improper grounding. # **PACKAGE DIMENSIONS** HSIP10-P-2.54 Unit: mm Weight: 2.47 g (Typ.) # **PACKAGE DIMENSIONS** SIP9-P-2.54A Unit: mm Weight: 0.92 g (Typ.) # **PACKAGE DIMENSIONS** HSOP16-P-300-1.00 Unit: mm Weight: 0.50 g (Typ.) # RESTRICTIONS ON PRODUCT USE 000707EBA - TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.. - The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk. - The products described in this document are subject to the foreign exchange and foreign trade laws. - The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others. - The information contained herein is subject to change without notice. This datasheet has been download from: www.datasheetcatalog.com Datasheets for electronics components.