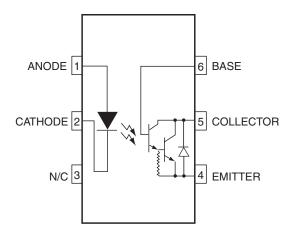
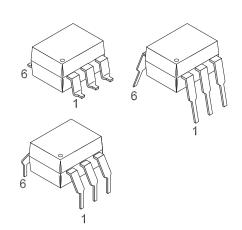


H11G1M, H11G2M, H11G3M High Voltage Photodarlington Optocouplers

Features

- High BV_{CFO}
 - Minimum 100V for H11G1M
 - Minimum 80V for H11G2M
 - Minimum 55V for H11G3M
- High sensitivity to low input current (Min. 500% CTR at I_F = 1mA)
- Low leakage current at elevated temperature (Max. 100µA at 80°C)
- Underwriters Laboratory (UL) recognized File # E90700, Volume 2


Applications


- CMOS logic interface
- Telephone ring detector
- Low input TTL interface
- Power supply isolation
- Replace pulse transformer

General Description

The H11GXM series are photodarlington-type optically coupled optocouplers. These devices have a gallium arsenide infrared emitting diode coupled with a silicon darlington connected phototransistor which has an integral base-emitter resistor to optimize elevated temperature characteristics.

Schematic

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Value	Units	
TOTAL DEVIC	E			
T _{STG}	Storage Temperature	-55 to +150	°C	
T _{OPR}	Operating Temperature	-40 to +100	°C	
T _{SOL}	Lead Solder Temperature (Wave Solder)	260 for 10 sec	°C	
P _D	Total Device Power Dissipation @ T _A = 25°C	260	mW	
	Derate Above 25°C	3.5	mW/°C	
EMITTER		'		
I _F	Forward Input Current	60	mA	
V_{R}	Reverse Input Voltage 6.0		V	
I _F (pk)	Forward Current – Peak (1µs pulse, 300pps)	3.0	А	
P _D	LED Power Dissipation @ T _A = 25°C	100	mW	
Derate Above 25°C		1.8	mW/°C	
DETECTOR				
V _{CEO}	Collector-Emitter Voltage			
	H11G1M 100		V	
	H11G2M	80		
	H11G3M	55		
P _D	LED Power Dissipation @ T _A = 25°C	200	mW	
	Derate Above 25°C	2.67	mW/°C	

Electrical Characteristics ($T_A = 25^{\circ}C$ unless otherwise specified.)

Individual Component Characteristics

Symbol	Characteristic	Test Conditions	Device	Min.	Typ.*	Max.	Unit
EMITTER	-	1		-			
V _F	Forward Voltage	I _F = 10mA	All		1.3	1.50	V
$\frac{\Delta V_F}{\Delta T_A}$	Forward Voltage Temp. Coefficient		All		-1.8		mV/°C
BV _R	Reverse Breakdown Voltage	I _R = 10μA	All	3.0	25		V
СЛ	Junction Capacitance	$V_F = 0V, f = 1MHz$	All		50		pF
		$V_F = 1V, f = 1MHz$			65		
I _R	Reverse Leakage Current	V _R = 3.0V	All		0.001	10	μA
DETECTO	R			1			
0_0	Breakdown Voltage	I _C = 1.0mA, I _F = 0	H11G1M	100			V
	Collector to Emitter		H11G2M	80			
			H11G3M	55			
BV_CBO	Collector to Base	$I_{C} = 100 \mu A$	H11G1M	100			V
			H11G2M	80			
			H11G3M	55			
BV_{EBO}	Emitter to Base		All	7	10		V
0_0	Leakage Current Collector to Emitter	$V_{CE} = 80V, I_{F} = 0$	H11G1M			100	nA
		$V_{CE} = 60V, I_{F} = 0$	H11G2M				
		$V_{CE} = 30V, I_F = 0$	H11G3M				
		$V_{CE} = 80V, I_F = 0, T_A = 80^{\circ}C$	H11G1M			100	μA
		$V_{CE} = 60V, I_F = 0, T_A = 80^{\circ}C$	H11G2M				

Transfer Characteristics

Symbol	Characteristics	Test Conditions	Device	Min.	Тур.*	Max.	Units
EMITTER			1	'		'	
	Current Transfer	I _F = 10mA, V _{CE} = 1V	H11G1M/2M	100 (1000)			mA (%)
	Ratio, Collector to	I _F = 1mA, V _{CE} = 5V	H11G1M/2M	5 (500)			
	Emitter		H11G3M	2 (200)			
V _{CE(SAT)}	Saturation Voltage	I _F = 16mA, I _C = 50mA	H11G1M/2M		0.85	1.0	V
		I _F = 1mA, I _C = 1mA	H11G1M/2M		0.75	1.0	
		I _F = 20mA, I _C = 50mA	H11G3M		0.85	1.2	
SWITCHING	TIMES						
t _{ON}	Turn-on Time	$R_L = 100\Omega, I_F = 10mA,$	All		5		μs
t _{OFF}	Turn-off Time	V _{CE} = 5V, f ≤ 30Hz, Pulse Width ≤ 300μs	All		100		μs

Isolation Characteristics

Symbol	Characteristic	Test Conditions	Device	Min.	Тур.*	Max.	Units
V _{ISO}	Isolation Voltage	f = 60Hz, t = 1 sec.	All	7500			V _{AC} PEAK
R _{ISO}	Isolation Resistance	V _{I-O} = 500 VDC	All	10 ¹¹			Ω
C _{ISO}	Isolation Capacitance	f = 1MHz	All		0.2		pF

^{*}All Typical values at $T_A = 25$ °C

Typical Performance Curves

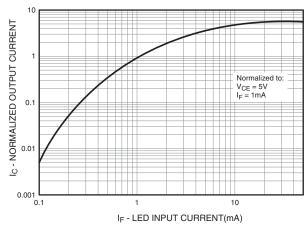


Fig. 1 Output Current vs. Input Current

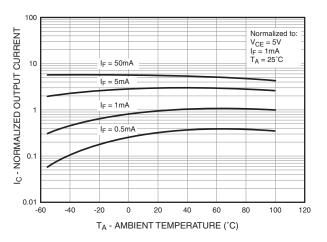


Fig. 2 Normalized Output Current vs. Temperature

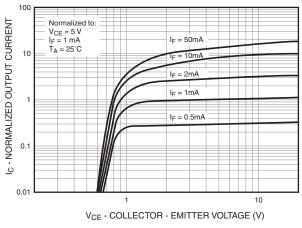


Fig. 3 Output Current vs. Collector - Emitter Voltage

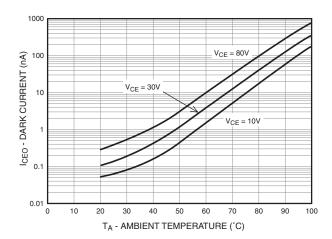
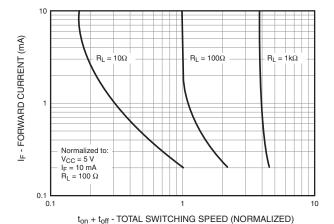
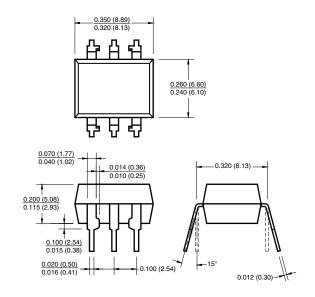
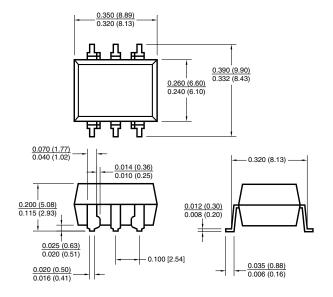
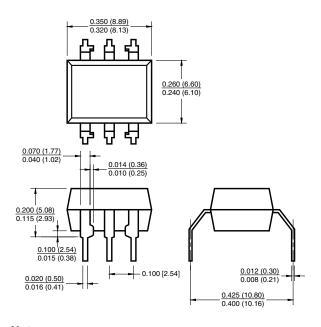


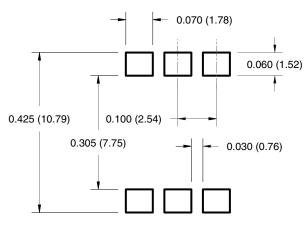
Fig. 4 Collector-Emitter Dark Current vs. Ambient Temperature


Fig. 5 Input Current vs. Total Switching Speed (Typical Values)

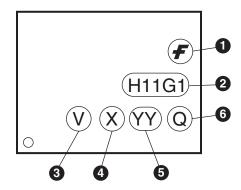
Package Dimensions


Through Hole


Surface Mount

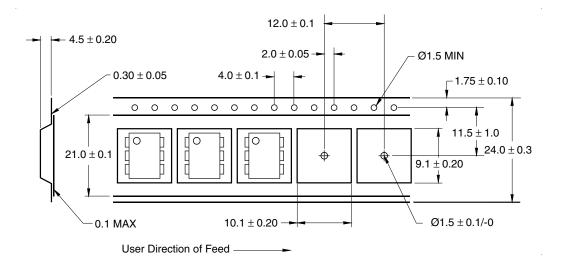
0.4" Lead Spacing

Recommended Pad Layout for Surface Mount Leadform

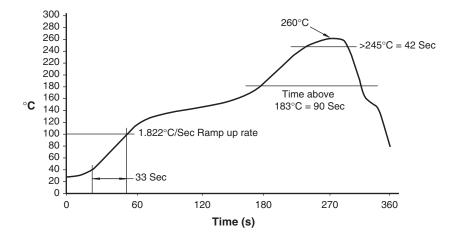

Note:

All dimensions are in inches (millimeters).

Ordering Information


Option	Order Entry Identifier (Example)	Description		
No option	H11G1M	Standard Through Hole Device		
S	H11G1SM	Surface Mount Lead Bend		
SR2	H11G1SR2M	Surface Mount; Tape and Reel		
Т	H11G1TM	0.4" Lead Spacing		
V	H11G1VM	VDE 0884		
TV	H11G1TVM	VDE 0884, 0.4" Lead Spacing		
SV H11G1SVM		VDE 0884, Surface Mount		
SR2V H11G1SR2VM		VDE 0884, Surface Mount, Tape and Reel		

Marking Information



Definitions				
1	Fairchild logo			
2	Device number			
3	VDE mark (Note: Only appears on parts ordered with VDE option – See order entry table)			
4	One digit year code, e.g., '7'			
5	Two digit work week ranging from '01' to '53'			
6	Assembly package code			

Carrier Tape Specifications

Reflow Profile

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACFx® i-Lo™ Power-SPM™ TinyBoost™ Across the board. Around the world.™ PowerTrench® ImpliedDisconnect™ TinyBuck™ ActiveArray[™] IntelliMAX™ Programmable Active Droop™ TinyLogic[®] TINYOPTO™ QFĚT Bottomless™ ISOPLANAR™ Build it Now™ QS™ TinyPower™ MICROCOUPLER™ MicroPak™ QT Optoelectronics™ CoolFET™ TinyWire™ CROSSVOLT™ Quiet Series™ TruTranslation™ MICROWIRE™ $\mathsf{CTL^{\mathsf{TM}}}$ RapidConfigure™ Motion-SPM™ μSerDes™ Current Transfer Logic™ MSX™ RapidConnect™ . UHC® DOME™ MSXPro™ ScalarPump™ UniFET™ E²CMOS™ OCX^{TM} SMART START™ VCX™ EcoSPARK® SPM[®] Wire™ OCXPro™

EnSigna™ OPTOLOGIC® STEALTH™ FACT Quiet Series™ OPTOPLANAR® SuperFET™ FACT[®] PACMAN™ SuperSOT™3 $\mathsf{FAST}^{^{\circledR}}$ PDP-SPM™ SuperSOT™6 FASTr™ РОР™ SuperSOT™8 FPS™ Power220® SyncFET™ FRFET® Power247® ТСМ™

GlobalOptoisolator™ PowerEdge™ The Power Franchise®

GTO™ PowerSaver™

HiSeC™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild Semiconductor. The datasheet is printed for reference information only.

Rev. I26