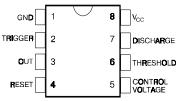
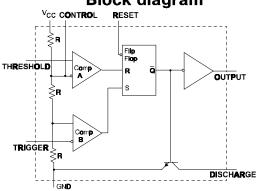


DESCRIPTION

These devices are monolithic timing circuits capable of producing accurate time delays or oscillation. In the time delay mode of operation, the timed interval is controlled by a single external resistor and capacitor network. In the astable mode of operation, the frequency and duty cycle may be independently controlled with two external resistors and a single external capacitor.


FEATURES

- Timing from Microseconds to Hours
- Astable or Monostable Operation
- Adjustable Duty Cycle
- TTL Compatible Output Can Sink or Source Up to 200 mA
- Temperature Stability of 0.005% per °C
- Direct Replacement for Signetics NE555 Timer


APPLICATIONS

- Precision timing
- Pulse generation
- Sequential timing
- Time delay generation
- Pulse width modulation
- Pulse position modulation
- Missing pulse detector

Pin Configuration (TOP VIEW)

Block diagram

RESET can override TRIGGER, which can override THRESHOLD

Absolute Maximum Ratings (T_A=25°C, unless otherwise specified)

PARAMETER	MIN	MAX	UNITS
Supply Voltage, V _{CC}	4.5	16	V
Input Voltage (control, reset, threshold and trigger)		V_{CC}	
Output Current, I ₀		±200	mA
Operating Free-Air Temperature, T _A		70	∘C
Storage Temperature Range, T _{STG}	-65	+150	

Function Table

RESET	TRIGGER VOLTAGE *	THRESHOLD VOLTAGE *	OUTPUT	DISCHARGE SWITCH				
Low	Irrelevant	Irrelevant	Low	On				
High	< 1/3 V _{CC}	High	High	Off				
High	> 1/3 V _{CC}	> 2/3 V _{CC}	Low	On				
High	> 1/3 V _{CC}	< 2/3 Vcc	As previously established					

^{*} Voltage levels shown are nominal

TYPICAL APPLICATION DATA

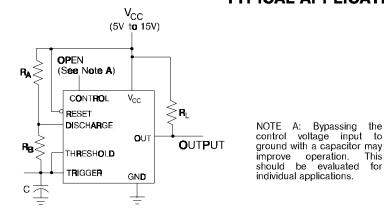


Fig. 1 Circuit for astable operation

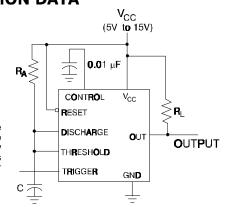


Fig. 2 Circuit for monostable operation

Electrical characteristics (T_A=25°C, V_{CC}=+5V to +15V, unless otherwise specified)

PARAMETER		TEST CONDITIONS (see Note 2)		MIN	TYP	MAX	UNITS
Operating Supply Voltage Ran	ge	(555 : 1515 =)		4.5		16	V
Threshold Voltage Level		V _{CC} =15V		8.8	10	11.2	V
		$V_{CC}=5V$		2.4	3.3	4.2	
Threshold Current (see Note 1)		(see Note 1)			30	250	nA
Trigger Voltage Level		V _{CC} =15V		4.5	5	5.6	V
		$V_{CC}=5V$		1.1	1.67	2.2	
Trigger Current		Trigger at 0V			0.5	2	μΑ
Reset Voltage Level				0.3	0.7	1	V
Reset Current		Reset at V _{CC}			0.1	0.4	mA
		Reset at 0V			-0.4	-1.5	
Discharge Leakage Current					20	100	nA
Control Voltage Level		V _{CC} =15V		9	10	11	V
		V _{CC} =5V	-	2.6	3.3	4	
Low-level Output Voltage		V _{CC} =15V	I _{OL} =10mA		0.1	0.25	
			I _{OL} =50mA		0.4	0.75	
			I _{OI} =100mA		2	2.5	
			I _{OI} =200mA		2.5		
		V _{CC} =5V	I _{OL} =5mA		0.25	0.35	
			I _{OL} =8mA		0.3	0.4	
High-level Output Voltage		V _{CC} =15V	l _{OI} =-100mA	12.75	13.3		
			I _{OI} =-200mA		12.5		
		V _{CC} =5V	l _{OL} =-100mA	2.75	3.3		
Supply Current		Output Low,	V _{CC} =15V V _{CC} =5V		10	15	mA
		No Load	V _{CC} =5V		3	6	
		Output High,	V _{CC} =15V		9	13	
		No Load	V _{CC} =5V		2	5	
	nostable e Note 4)	T _A =25°C			1	3	%
	able e Note 5)				5	13	
	nostable	T _A =MIN to MAX			50	150	ppm /°C
•	able				150	500	' ' ' -
	nostable	T _A =25°C			0.1	0.5	%/V
	able	1			0.3	1	
Output Pulse Rise Time		$C_{l} = 15pF, T_{A} = 1$	25°C		100	300	ns
Output Pulse Fall Time					100	300	110

Notes:

- 1. This parameter influences the maximum value of the timing resistors R_A and R_B in the circuit on Fig 1. For example, when V_{CC} =5V, the maximum value is $R=R_A+R_B=3.4~M\Omega$, and $V_{CC}=15V$, the maximum value is 10 $M\Omega$.
- 2. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
- 3. Timing interval error is defined as the difference between the measured value and the average value of a random sample from each process run.
- 4. Values specified are for a device in a monostable circuit similar to Fig. 2, with component values as follow: $R_A=2K\Omega$ to 100 $K\Omega$, $C=0.1\mu F$.
- 5. Values specified are for a device in an astable circuit similar to Fig. 1, with component values as follow: R_A , R_B =1 K Ω to 100 K Ω , C=0.1 μ F.