ALUMINUM ELECTROLYTIC CAPACITORS SPECIFICATION SHEET

CUSTOMER PART No.		
Rubycon PART No.	YXF SERIES (Option Code : EFC)	
DRAWING No.	REE - 114577	ISSUE No.
ISSUE DATE	27 September 2019	

1938-1, NISHIMINOWA, INA-SHI, NAGANO-KEN, JAPAN TEL No. 0265-72-7116 FAX No. 0265-73-3380

	HIROKI KOMATSU
DESIGN	H. Kromatan
	KAZUHIRO YONEYAMA
CHECK	kyane
	YOSHINORI SASAKI
APPROVAL	7 Garages

Rubycon Aluminum electrolytic capacitors Specification Sheet YXF SERIES

Drawing No. : REE - 114577

REVIS	SIONS			1st. ISSUE	26 Dec	2013
ISSUE No.	REVISION MARK	DATE	DESCRIPTION		CH.	APP.
2		24 April 2018	•Changed format		K.Y.	T.K.
3		27 Sep. 2019	•Changed to $245\pm3^\circ$ C Temperature of Solder $245\pm5^\circ$ C •Changed Guide to application to RCR-2367D from		K.Y.	Y.S

Page 1/9

Rubycon YXF SERIES

Aluminum electrolytic capacitors Specification Sheet

Drawing No.: REE-114577

Issue No. : 3

1.Scope.

This specification covers polarized aluminum electrolytic capacitors with non-solid electrolyte for use in electronic equipments.

2. Reference Standard

JIS C 5141 (1991) and JIS C 5102 (1994) methods for testing.

3. Operating Temperature Range

-40°C to +105°C

4. Performance Refer to Table-2

5. Style and Numbering System

(1) Style CE 04 (Radial Leaded)

(2) Numbering System Nominal Rated Series Tolerance Option Lead Case size Voltage Capacitance Forming **YXF** M **EFC**

PET

6. Marking

Unless otherwise specified, capacitor shall be clearly marked the following items on its body.

Sleeve color: Black

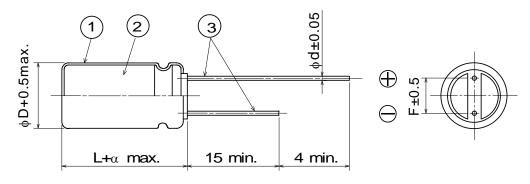
Lettering color: White

Rubycon (1) Trade mark (2) Rated Voltage V (3) Nominal Capacitance μF

(4) Polarity (Negative Polarity) (5) Series

(6) Lot Number (7) Maximum Operating Temperature 105°C

(8) PET Sleeve mark


On capacitors whose diameter is 6.3mm and greater, a safety vent shall be provided.

Rubycon Aluminum electrolytic capacitors Specification Sheet YXF SERIES_____

Drawing No.: REE-114577

Issue No. : 3

8. Diagram of dimensions. :unit mm

φD	5	6.3	8	10	12.5	16	18
фd	0.	.5		0.6		0	.8
F	2.0	2.5	3.5	5	.0	7.	.5
α		L≤′	16 : α=1.	5 L≥:	20 : α=2.	0	

1	Sleeve	P.E.T.
9	Case	Aluminum
3	Lead Wire	Tin plated

9. Standard size

◆Table-1 Standard size, Rated ripple current, Impedance

		Rated voltage 6.3Vdc		
capacitance	Size	Ripple Current	Impedance (ΩMAX)	
(μF)	φDxL(mm)	(mA r.m.s./105°C,100kHz)	20°C,100kHz	-10°C,100kHz
100	5X11	150	0.90	3.6
220	6.3X11	250	0.40	1.6
330	6.3X11	250	0.40	1.6
470	8X11.5	400	0.25	1.0
1000	10X12.5	580	0.16	0.65
2200	12.5X20	1300	0.062	0.21
3300	12.5X20	1300	0.062	0.21
4700	16X25	1850	0.034	0.096
6800	16X25	1850	0.034	0.096
10000	16X31.5	2000	0.029	0.087
15000	18X35.5	2200	0.025	0.058

		Rated voltage 10Vdc		
capacitance	Size	Ripple Current	Impedano	ce (ΩMAX)
(μF)	φDxL(mm)	(mA r.m.s./105°C,100kHz)	20°C,100kHz	-10°C,100kHz
100	5X11	150	0.90	3.6
220	6.3X11	250	0.40	1.6
330	8X11.5	400	0.25	1.0
470	8X11.5	400	0.25	1.0
1000	10X16	770	0.12	0.46
2200	12.5X20	1300	0.062	0.21
3300	12.5X25	1650	0.048	0.16
4700	16X25	1850	0.034	0.096
6800	16X31.5	2000	0.029	0.087
10000	18X35.5	2200	0.025	0.058

capacitance	Size	Ripple Current	Impedan	ce (ΩMAX)
(μ F)	φDxL(mm)	(mA r.m.s./105°C,100kHz)	20°C,100kHz	-10°C,100kHz
47	5X11	150	0.90	3.6
100	6.3X11	250	0.40	1.6
220	8X11.5	400	0.25	1.0
330	8X11.5	400	0.25	1.0
470	10X12.5	580	0.16	0.65
1000	10X20	1050	0.078	0.30
2200	12.5X25	1650	0.048	0.16
3300	16X25	1850	0.034	0.096
4700	16X31.5	2000	0.029	0.087
6800	18X35.5	2200	0.025	0.058

		Rated voltage 25Vdc			
capacitance	Size	Ripple Current	Impedance (ΩMAX)		
(μF)	φDxL(mm)	(mA r.m.s./105°C,100kHz)	20°C,100kHz	-10°C,100kHz	
33	5X11	150	0.90	3.6	
47	5X11	150	0.90	3.6	
100	6.3X11	250	0.40	1.6	
220	8X11.5	400	0.25	1.0	
330	10X12.5	580	0.16	0.65	
470	10X16	770	0.12	0.46	
1000	12.5X20	1300	0.062	0.21	
2200	16X25	1850	0.034	0.096	
3300	16X31.5	2000	0.029	0.087	
4700	18X35.5	2200	0.025	0.058	

		Rated voltage 35V		
capacitance	Size	Ripple Current	Impedanc	e (ΩMAX)
(μF)	φDxL(mm)	(mA r.m.s./105°C,100kHz)	20°C,100kHz	-10°C,100kHz
33	5X11	150	0.90	3.6
47	6.3X11	250	0.40	1.6
100	8X11.5	400	0.25	1.0
220	10X12.5	580	0.16	0.65
330	10X16	770	0.12	0.46
470	10X20	1050	0.078	0.30
1000	12.5X25	1650	0.048	0.16
2200	16X31.5	2000	0.029	0.087
3300	18X35.5	2200	0.025	0.058

		Rated voltage 50V		
capacitance	Size	Ripple Current	Impedance (ΩMAX)	
(μ F)	φDxL(mm)	(mA r.m.s./105°C,100kHz)	20°C,100kHz	-10°C,100kHz
1	5X11	30	4.0	8.0
2.2	5X11	43	2.5	6.0
3.3	5X11	53	2.2	5.6
4.7	5X11	88	1.9	5.0
10	5X11	100	1.5	4.0
22	5X11	150	0.90	3.6
33	6.3X11	250	0.40	1.6
47	6.3X11	250	0.40	1.6
100	8X11.5	400	0.25	1.0
220	10X16	770	0.12	0.46
330	10X20	1050	0.078	0.30
470	12.5X20	1300	0.062	0.21
1000	16X25	1850	0.034	0.096
2200	18X35.5	2200	0.025	0.058

Rubycon Aluminum electrolytic capacitors Specification Sheet YXF SERIES

Drawing No.: REE-114577

		Rated voltage 63V		
capacitance	Size	Ripple Current	Impedanc	e (ΩMAX)
(μF)	φDxL(mm)	(mA r.m.s./105°C,100kHz)	20°C,100kHz	-10°C,100kHz
10	5X11	87	2.3	9.3
22	6.3X11	140	1.3	5.2
33	6.3X11	140	1.2	5.0
47	8X11.5	210	0.63	2.8
100	10X12.5	300	0.43	1.8
220	10X20	520	0.21	0.84
330	12.5X20	660	0.16	0.64
470	12.5X25	750	0.12	0.45
1000	16X31.5	1390	0.054	0.20

		Rated voltage 100V					
capacitance	Size	Ripple Current	Impedance (ΩMAX)				
(μ F)	φDxL(mm)	(mA r.m.s./105°C,100kHz)	20°C,100kHz	-10°C,100kHz			
1	5X11	20	4.5	15.0			
2.2	5X11	30	3.0	13.0			
3.3	5X11	40	2.7	11.0			
4.7	5X11	65	2.5	10.0			
10	6.3X11	140	1.2	5.0			
22	8X11.5	160	0.63	2.8			
33	10X12.5	230	0.43	1.8			
47	10X16	290	0.31	1.5			
100	12.5X20	430	0.16	0.64			
220	16X25	900	0.073	0.27			
330	16X25	900	0.073	0.27			

Aluminum electrolytic capacitors Specification Sheet

Drawing No. : REE-114577

♦ Table-2 PERFURIVIAINUE	♦Table-2	PERFORMANCE	
--------------------------	----------	-------------	--

	ITEMS	PERFORMANCE									
1	Rated Voltage(WV)	WV(V.DC)	6.3	10	16	25	35	50	63	100	1
	Surge Voltage (SV)						44				
		SV(V.DC)	8	13	20	32	44	63	79	125	
2	Capacitance (Tolerance)	<condition> Measuring Frequency : 120Hz±20%</condition>									
		Measuring Free Measuring Volt Measuring Ten	tage	: No	t more t	% han 0.5	Vrms				
		<criteria> 1 to 15000μF (±20%)</criteria>									
3	Leakage Current	<condition> The rated voltage shall be applied between terminals of capacitor such that the terminal voltage reach the rated voltage within one minute and the leakage current shall be measured at 2 minutes at the voltage has reached the rated voltage across a 1000 \pm10 Ω series protection resister. Then current value shall not exceed value calculated from following formula.</condition>								easured at 2 minutes after	
		<criteria> I=0.01CV or 3μA whichever is greater where I : Leakage current in μA. C : Nominal capacitance in μF. V : Rated voltage in V.DC.</criteria>									
4	Dissipation Factor (tanð:Tangent of loss angle)	<condition> See ITEM 2, Nominal Capacitance, for measuring frequency, voltage and temperature. <criteria></criteria></condition>									
		WV(V.DC)	6.3	10	16	25	35	50	63	100	
		tanδ	0.22	0.19	0.16	0.14	0.12	0.10	0.09	0.08	
		When nominal capacitance is over $1000\mu F$, $tan\delta$ shall be added 0.02 to the listed value with increase of every $1000\mu F$.									0.02 to the listed value
5	Terminal Strength	<condition> Tensile Strength of Terminals The body of capacitor shall be fixed and the tensile force of following table shall be applied to the terminal in lead out direction of the terminal for 10±1 seconds.</condition>							le shall be applied to the		
		Bending Strength of Terminals The body of capacitor shall be held in such a way that the regular lead-out axis of lead wire termin becomes vertical. The weight of following table shall be suspended from the end of terminal. In the condition, after the body of sample is bent through 90 degrees, it shall be returned to the origin position. Next the body shall be reversibly bent through 90 degrees and again returned to the origin position.								e end of terminal. In this e returned to the original	
		Diameter of I	ead wir	e			ile force	9		ding forc	ce
		0.5mm and le					{kgf} 0.51}			l{kgf} {0.25}	
		Over 0.5mm	to 0.8m	nm incl		10{				[0.51]	
		<criteria> Notable changes shall not be found, as breakage or looseness in the terminal.</criteria>									

Aluminum electrolytic capacitors Specification Sheet

Issue No. : 3

Drawing No.: REE-114577

i	Coefficient and Drift	<condition></condition>										
		STEP	Testing Te	mperati	ure (°C)	1	Time					
		1		20±2								
	1	2		-40±3								
	1	3		-25±3			T:		- - 4 4 -		.::::::::::::::::::::::::::::::::::::::	
		4		20±2			TITTE	to read	on men	nai equ	ıilibrium	
		5		105±2	05±2]					
		6	6 2									
	Capacitance,	, D.F. and Im	npedano	ce shall	be m	easured	at 120F	łz.				
		<criteria></criteria>										
	1	STEP 2,	pedance Ratio			The value of ratio to STEP 1 not more than value following table.					re than value o	
		STEP 5	Capac	Capacitance Change			Within ±25% of the value of STEP 1					
			Dissipation Factor			Not more than the specified value						
				Leakage Current			Not more than 8 times the specified value					
					tance Change			Within ±10% of the value of STEP 1				
				on Factor		Not more than the specified value						
		<u> </u>	Leaka	ge Curr	ent		Not mo	re than	the spe	ecified v	/alue	
		WV	(V.DC)	6.3	10	16	25	35	50	63	100	
	l	Z(-25°C))/Z(+20°C)	4	3	2	2	2	2	2	2	
	1)/Z(+20°C)	8	6	4	3	3	3	3	3	
ì												
	Load Life Test	protective re	esistor (with	rated r	ipple c	urrent 2 hour) at 105 s, and th	±2°C fo	or follov	ving te	st period	ough 1000 $Ω$ s. I. After the testing requirements
	Load Life Test	Capacitor protective returned in s	esistor (with	rated radition fo	ipple c	urrent 2 hour Life) at 105 s, and th time	±2°C fo	or follov	ving te	st period	I. After the tes
	Load Life Test	Capacitor protective returned in s	esistor (with standard cor	rated radition for 6.3	ripple c or 1 to 2	urrent 2 hour Life) at 105 s, and th time	±2°C for e capa	or follov	ving te	st period	I. After the tes
	Load Life Test	Capacitor protective returned in s	esistor (with standard cor ase dia	rated radition for 6.3	ripple cor 1 to 2 to 10W	urrent 2 hour Life	at 105. s, and the time	±2°C for e capa	or follov	ving te	st period	I. After the tes
	Load Life Test	Capacitor protective returned in s	esistor (with standard cor ase dia 5, ¢6.3	rated radition for 6.3	to 10W	urrent 2 hour Life	2) at 105 2s, and the time 16 to 1	±2°C for e capa	or follov	ving te	st period	I. After the tes
	Load Life Test	Capacitor protective returned in s	esistor (with standard cor ase dia 5, \$\phi 6.3 B, \$\phi 10	rated radition for 6.3	to 10W 000^{+72}_{0} 000^{+72}_{0}	urrent 2 hour Life) at 105; s, and the time 16 to 1 7000	±2°C for e capa	or follov	ving te	st period	I. After the tes
	Load Life Test	Capacitor protective returned in s	esistor (with standard cor ase dia 5, \$\phi 6.3 8, \$\phi 10 5 to \$\phi 18	6.3 40 60	to 10W to 10W 000 +72 000 +72 000 +72 0	urrent 2 hour Life V	2) at 105. s, and the time 16 to 1 5000 10000	±2°C for e capa	or follov	ving te	st period	I. After the tes
	Load Life Test	Capacitor protective returned in second of the second of t	esistor (with standard cor ase dia 5, \$\phi 6.3 B, \$\phi 10	6.3 40 60 80	to 10W to 10W 000 +72 000 +72 000 +72 000 +72 0	urrent 2 hour Life V) at 105; s, and the time 16 to 1 7000	±2°C for e capa 00WV) +72 0 +72 0 +72 0 +72 0 +72 0 +72 0 +72 0 +72 0 +72 0 +72	or follov	ving te	st period	I. After the tes

Page 7/9

Rubycon YXF SERIES

Aluminum electrolytic capacitors Specification Sheet

Drawing No. : REE-114577

: 3

Issue No.

Shelf Life Test <Condition> Capacitors shall be stored at 105±2°C with no voltage applied for 1000 ⁺⁴⁸ hours. After the test and returned in standard condition for 1 to 2 hours and the capacitor shall meet following requirements. (If any doubt arises on the judgment, the capacitors shall be subjected to voltage treatment specified in JIS C 5141.5.2.) <Criteria> Leakage Current Not more than the specified value Within ±25% of the initial value Capacitance Change Dissipation Factor Not more than 200% of the specified value Appearance Notable changes shall not be found Surge Voltage <Condition> Capacitors shall be applied the surge voltage through a (100 \pm 50)/C $[k\Omega]$ resistor in series for 30±5 seconds in every 6±0.5 minutes at 15 to 35°C. Procedure shall be repeated 1000 times. Then the capacitors shall be left under normal humidity for 1 to 2 hours before measurement. [C: Nominal Capacitance (µF)] <Criteria> Leakage Current Not more than the specified value Capacitance Change Within ±15% of the initial value Dissipation Factor Not more than the specified value Appearance Notable changes shall not be found \Diamond This test simulates over voltage at abnormal situations, and not be hypothesizing that over voltage is always applied. 10 Vibration Test <Condition> Testing shall be done out in 3 AXIS for 2 hours each (total 6 hours) as below. Fix lead wire at a point not more than 4mm from the body, use mounting device separately for the one with a diameter 12.5mm and greater or with a length 25mm and longer. Vibration frequency range : 10 to 55Hz Peak to peak amplitude : 1.5mm : 10 to 55 to 10Hz, In about 1min. Sweep rate <Criteria> Capacitance Change Within ±5% of the initial value Appearance Notable changes shall not be found 11 Solder ability Terminals of the capacitor shall be immersed in flux (ethanol solution of the rosin, 25 wt% rosin) and shall be immersed in the solder bath (Sn96.5Ag3.0Cu0.5, $245\pm3^{\circ}$ C) and held for 3 ± 0.3 seconds, and pulled out at the same speed. At least over 95% of circumferential surface of dipped portion of the terminal shall be covered with new solder

Page 8/9

Rubycon YXF SERIES

Aluminum electrolytic capacitors Specification Sheet

Drawing No. : REE-114577

12	Resistance to Solder Heat	<condition> Terminals of the capacitor shall be immersed into solder bath at 260±5°C for 10±1 seconds up to 1.5 to 2.0mm from the body of capacitor. Then the capacitors shall be left under the normal temperature and normal humidity for 1 to 2 hours before measurement.</condition>										
		<criteria></criteria>										
		Leakage Curr	rent 1	Not more than the specified value								
		Capacitance	Change \	Within ±10% of the initial value								
		Dissipation Fa	actor 1	Not more than the specified value								
		Appearance	1	Notable chan	ges shall no	t be found						
13	Resistance to Damp Heat (Steady State)	Then the cap before measure		e left under th	ne normal te	mperature a						
		Leakage Curr	rent 1	Not more than the specified value								
		Capacitance	Change \	Within ±15% of the initial value								
		Dissipation Fa	actor 1	Not more than the specified value								
		Appearance	1	Notable changes shall not be found								
14	Rated Ripple Current	maximum ope (2)The combined voltage and sh < Frequency Coe	erating tempera d value of D.C. nall not be reve	.C. voltage and the peak A.C. voltage shall not exceed the rated everse voltage.								
			1		0.35	0.60	0.80	1.00				
			2.2 to		0.42	0.60	0.80	1.00				
		Coefficient	22 to 47 to		0.55 0.70	0.75 0.85	0.90 0.95	1.00				
			47 to		0.75	0.83	0.98	1.00				
			2200 to		0.80	0.95	1.00	1.00]			
		< Temperature C	Coefficient >									
		Ambient Temp		105	85	65≥]					
		Coefficient		1.0 1.7 2.1								
		oTemperature of passed through be nearly equal oUse of aluminu charge-discharg When ripple vo	a capacitor a with the lifetim electrolytic of the operation.	t each tempe e at the rated capacitor und	erature wher d maximum der ripple vo	n the life expoperating ten Itage with wi	ectancy of nperature.	a capacitor	becomes to ent to quick			
1		over 100V, please contact us.										

Aluminum electrolytic capacitors Specification Sheet

Issue No. : 3

Drawing No.: REE-114577

Notes on use of aluminum electrolytic capacitors

(1) Charge and discharge

Do not use for the circuit that repeats quick charge or discharge.

(2) External stress

Do not apply excessive force of pushing, pulling bending, and/or twisting to the main body, lead wire and terminals.

(3) Heat resistance at soldering process

In the soldering process of PC board with Capacitors mounted, secondary shrinkage or crack of sleeve may be observed when soldering temperature is too high and /or soldering time is too long.

If lead wire of other components or pattern of double sided PC board touches the capacitor, the similar failure may be also originated at pre-heating, heating at hardening process of adhesive and soldering process.

(4) Insulation and PC board mounting

Sleeve is for marking purpose only.

It is not recognized as insulation materials.

When double sided PC board is employed, note that it could cause a short circuit if lead wire of other components or pattern of double sided PC board touches capacitor. Please avoid circuit pattern runs underneath capacitor.

In addition, case and cathode terminal are not insulated.

(5) Adhesives and coating materials

Do not use the adhesives and coating materials that contain halogenated organic solvents or chloroprene as polymer.

(6) Storage

Keep at a normal temperature and humidity. During a long storage time, leakage current will be increased. To prevent heat rise or any trouble that high leakage current possibly causes, voltage treatment is recommended for the capacitors that have been stored for a long time.

.<Storage Condition>

*Aluminum electrolytic capacitors should not be stored in high temperatures or where there is a high level of humidity. The suitable storage condition is 5°C-35°C and less than 75% in relative humidity.

*Aluminum electrolytic capacitors should not be stored in damp conditions such as water, saltwater spray or oil spray.

*Do not store aluminum electrolytic capacitors in an environment full of hazardous gas (hydrogen sulfide, sulfurous acid gas, nitrous acid, chlorine gas, ammonia or bromine gas).

*Aluminum electrolytic capacitors should not be stored under exposure to ozone, ultraviolet rays or radiation.

(7) Fumigation and halogenated flame retardant

It may cause corrosion of internal electrodes, aluminum cases and terminal surface when the following conditions exist.

*Fumigation of wooden pallets before shipment to disinfect vermin.

*Existence of components or parts that contain halogenated flame retardant agent (bromine etc.) together with capacitors.

*When halogenated detergents of antiseptics for preventing infection of epidemic diseases contact directly to capacitors.

(8) PC board cleaning after soldering

Please consult us when cleaning is subjected.

♦ Guide to application except the above are described in our catalog and JEITA RCR-2367D (including any amendments).

JEITA RCR-2367D: "Safety application guide for fixed aluminum electrolytic capacitors for use in electronic equipment."

Published by Japan Electronics and Information Technology Industries Association.